

Screened-Exchange Range-Separated Hybrid Functionals for heterogeneous systems

Jiawei Zhan¹, Marco Govoni^{1,2,3}, and Giulia Galli^{1,2,4}

¹Pritzker School of Molecular Engineering, University of Chicago

²Materials Science Division, Argonne National Laboratory

³Department of Physics, Computer Science, and Mathematics, University of Modena and Reggio Emilia

⁴Department of Chemistry, University of Chicago

March 4, 2024

J. Zhan, M. Govoni, and G. Galli, J. Chem. Theory Comput., 2023, doi: 10.1021/acs.jctc.3c00580.

Introduction and Motivation

• Materials used in devices for the development of any technology exhibit inherent heterogeneity

interfaces

defective systems

- Density Functional Theory (DFT) has been widely and successfully used for decades to provide insight into the mechanisms that govern the behavior of materials
- However, it is still challenging for available exchange and correlation (xc) functionals to describe with the same accuracy the electronic properties of different components of heterogeneous systems Si/SiO₂

THE UNIVERSITY OF CHICAGO

- Introduction to Screened-Exchange Range-Separated Hybrid (SE-RSH)
- Applications of SE-RSH to
 - analyze the electronic structures of heterogeneous systems:
 - Interfaces
 - Two-dimensional (2D) systems
 - Defective 2D systems
 - metal oxides
- Conclusions and future work

F. Gygi, Ibm J Res Dev **52**, 137 (2008)

Generalized Kohn-Sham theory:

 $\Sigma_{\chi}^{\rm GKS} = \alpha \Sigma_{\rm X} + (1 - \alpha) V_{\chi}^{\rm GGA}$

 $\alpha \rightarrow ratio$ of Fock exchange to semi-local

Global Hybrid Functional[1-2]:

α: constant number

Range-Separated Hybrid Functional[3-11]:

 $\Sigma_{x}^{\text{GKS}}(\mathbf{r},\mathbf{r}') = \boldsymbol{\alpha}(\mathbf{r},\mathbf{r}';m,n,\mu) \odot \Sigma_{x}(\mathbf{r},\mathbf{r}')$ $+ (1-m)V_{x}^{\text{GGA,lr}}(\mathbf{r};\mu)$ $+ (1-n)V_{x}^{\text{GGA,sr}}(\mathbf{r};\mu)$

[1] P. Mori-Sánchez, A. J. Cohen, and W. Yang, J Chem Phys 125, 201102 (2006)

- [2] J. H. Skone, M. Govoni, and G. Galli, Phys Rev B 89, 195112 (2014)
- [3] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J Chem Phys 124, 219906 (2006)
- [4] I. C. Gerber et al., J Chem Phys 127, 054101 (2007)
- [5] T. Yanai, D. P. Tew, and N. C. Handy, Chem Phys Lett 393, 51 (2004)
- [6] E. Weintraub, T. M. Henderson, and G. E. Scuseria, J Chem Theory Comput 5, 754 (2009)
- [7] W. Chen et al., Phys Rev Mater 2, 073803 (2018)
- [8] J. H. Skone, M. Govoni, and G. Galli, Phys Rev B 93, 235106 (2016)
- [9] D. K. Lewis, A. Ramasubramaniam, and S. Sharifzadeh, Phys Rev Mater 4, 063803 (2020)
- [10] G. Prokopiou et al., J Chem Theory Comput 18, 2331 (2022)
- [11] P. Borlido et al., Npj Comput Mater 6, 96 (2020)

Family of Dielectric-Dependent Hybrid:

Global Dielectric-Dependent Hybrid (DDH)

 $\alpha = \frac{1}{\epsilon_{\infty}^{\text{bulk}}}$

Range-Separated Dielectric-Dependent Hybrid (RS-DDH)^{[2][3]}

$$\alpha\left(\mathbf{r},\mathbf{r}';\frac{1}{\epsilon_{\infty}^{\text{bulk}}},1,\mu\right) = \frac{1}{\epsilon_{\infty}^{\text{bulk}}} + \left(1 - \frac{1}{\epsilon_{\infty}^{\text{bulk}}}\right) \operatorname{erfc}(\mu|\mathbf{r}-\mathbf{r}'|)$$

Mean Average Relative Error [MARE%] for computed band gaps of semiconductors & insulators^[3]

Introduce spatial dependency into dielectric screening[4-5]

Local dielectric function $\epsilon(\mathbf{r})$ via finite field method:

$$\Delta P(\mathbf{r}) = -e \sum_{i=1}^{N_w} \Delta \mathbf{r}_{wc}^i \delta(\mathbf{r} - \mathbf{r}_{wc}^i)$$

 $\epsilon_{lphaeta}(\mathbf{r}) = \delta_{lphaeta} + 4\pi \frac{\Delta P_{lpha}(\mathbf{r})}{\Delta E_{eta}(\mathbf{r})}$

[1] J. H. Skone, M. Govoni, and G. Galli, Phys Rev B 89, 195112 (2014)
[2] W. Chen et al., Phys Rev Mater 2, 073803 (2018)

- [3] J. H. Skone, M. Govoni, and G. Galli, Phys Rev B 93, 235106 (2016)
- [4] H. Zheng, M. Govoni, and G. Galli, Phys Rev Mater 3, 073803 (2019)
- [5] P. Borlido, M. A. L. Marques, and S. Botti, J Chem Theory Comput 14, 939 (2018)

Screened-Exchange Range-Separated Hybrid(SE-RSH)

The ratio of Fock exchange to semi-local depends on position:

Application of SE-RSH to heterogeneous systems

Band offset at interfaces band gap (eV) of 2D systems Defects in 2D systems Local Functions ε(**r**) Si/Si_3N_4 0 $\mu(\mathbf{r})$ G_0W_0 [Ref.] systems* HSE06 SE-RSH 0.6 -1phosphorene 2.00 [2] 1.50 2.07 -2 MoS_2 2.17 2.63 2.58 [3] E_{vac}(eV) 0.5GaN 3.53 4.41 4.44 [1] / eV SE-RSH HSE06 C_B@monolayer-BN ... • • • Level Exp. -5ΒN 7.59 7.49 [4] 5.7 -6MAE(eV) 1.28 0.21 Energy -7MARE(%) 29.4 6.4 -8 -20 * A total of 9 2D systems were tested 10 20 30 $G_0 W_0$ SE-RSH z axis / A State-dependent screening $\epsilon_{\infty}^{\mathrm{BN-bulk}}$ $\epsilon_{\infty}^{\mathrm{bulk}}$ $\epsilon_i = |\epsilon(\mathbf{r})|\psi_i(\mathbf{r})| \ d\mathbf{r}$ Е_i С ϵ_i @ ML-BN monolaver-GaN V_{-1} defect CBM VBM VBM CBM State Index State Index

IE UNIVERSITY OF

CHICAGO

Application of SE-RSH to heterogeneous systems

Band offset at interfaces band gap (eV) of 2D systems Defects in 2D systems Local Functions ε(**r**) Si/Si₃N₄ 0 $\mu(\mathbf{r})$ G_0W_0 [Ref.] systems* HSE06 SE-RSH 0.6 -1phosphorene 2.00 [2] 1.50 2.07 -2 MoS_2 2.17 2.63 2.58 [3] E_{vac}(eV) 0.5GaN 3.53 4.41 4.44 [1] / eV SE-RSH HSE06 C_B@monolayer-BN Level Exp. -5ΒN 7.49 [4] 5.7 7.59 -6MAE(eV) 1.28 0.21 Energy -7MARE(%) 29.4 6.4 -8-2 * A total of 9 2D systems were tested 10 20 30 $G_0 W_0$ SE-RSH z axis / A

SE-RSH is a **nonempirical hybrid functional** that enable accurate calculations of the electronic properties of heterogeneous systems.

HE UNIVERSITY OF

CHICAGO

CHICAGO

• Applications of metal oxides are found in a wide range of fields.

Dielectric-Dependent Hybrid functionals tends to **overestimate** the bandgap of metal oxide.

systems	DD-RSH-CAM* _[1]	Exp. + ZPR
In2O3	3.51	2.7 ~ 2.9 [2]
TiO2	4.18	3.65 ~ 3.95 [3]
MnO	4.93	3.9~4.1 [4]
CoO	5.61	2.6 [4]
NiO	6.34	4.0 ~ 4.3 _[4]

*DD-RSH-CAM is a dielectric-dependent hybrid that achieve high accuracy in various semiconductors and insulators.

[3] Rangan, Sylvie, et al. J. Phys. Chem. C. 114.2 (2010)[4] P. Liu et al., J. Phys.: Condens. Matter. 32, 015502 (2019)

[1] Chen, Wei, et al. *Phys. Rev. Mater. 2.7* (2018)
[2] Scherer, V., et al., Appl. Phys. Lett. 100.21 (2012)

Spatial dependence of screening in metal oxides

Challenges in applying DDH to metal oxides:

Electronic band gap (eV) of metal oxides

systems*	DD-RSH-CAM _[1]	SE-RSH	Exp. + ZPR
In2O3	3.51	2.99	2.7 ~ 2.9 [2]
TiO2	4.18	4.02	3.65 ~ 3.95 [3]
ZnO	3.74	3.56	3.61 [4]
Al2O3	9.51	9.45	9.1 ~ 9.5 [5]
CaO	7.17	7.05	7.43 _[6]
MgO	8.19	8.17	8.3 _[7]
WO3	3.92	3.70	3.7 ~ 3.8 _[8]
MAE(eV)	0.286	0.213	
MARE(%)	6.87	3.70	

[1] Chen, Wei, et al. *Phys. Rev. Mater.* 2.7 (2018)
 [2] Scherer, V., et al., *Appl. Phys. Lett.* 100.21 (2012)
 [3] Rangan, Sylvie, et al. *J. Phys. Chem. C.* 114.2 (2010)
 [4] Reynolds, D. C., et al. *Phys. Rev. B* 60.4 (1999)
 [5] French, Roger H., *J. Am. Ceram. Soc.* 73.3 (1990)
 [6] Whited, R. C. et al. *Solid State Commun.* 13.11 (1973)
 [7] Onuma, Takeyoshi, et al. *Appl. Phys. Lett.* 96.19 (2010)

SE-RSH results appear to be more accurate than RSH results, due to the inclusion of the spatial variation of the screening.

Conclusions and future work

CHICAGO

We proposed a nonempirical range-separated hybrid functional with spatially dependent screened exchange, SE-RSH, enabling accurate calculations of the electronic properties of heterogeneous systems and metal oxides.

The validation of our results for diverse materials shows that:

- **1.** Utilization of local dielectric function $\epsilon(\mathbf{r})$ help SE-RSH achieve high accuracy.
- 2. Metal oxides exhibit a strong spatial variation of the screening, which is captured by SE-RSH.

Future Work

- 1. Study metal-oxide interfaces w/wo defects.
- 2. Integrate Time-Dependent Density Functional Theory (TDDFT) with SE-RSH.
- 3. Accelerate exact exchange calculations in SE-RSH for modeling large-scale complex systems.

Office of Science

MICCo

RESEARCH Computing Center

GW Static Screening is well approximated by α^{SE-RSH} The UNIVERSITY OF CHICAGO

$$\sum_{j} \langle ij | \alpha \odot v_c | ji \rangle \quad \text{VS.} \quad \sum_{j} \langle ij | \epsilon^{-1} v_c | ji \rangle$$

 ϵ^{-1} : full dielectric matrix v_c : bared coulomb interaction $\{|i\rangle\}$: Maximally Localized Wannier Functions

screened exchange ratio (SER):

$$SER_{i}^{\alpha} = \frac{\sum_{j} \langle ij | \alpha \odot v_{c} | ji \rangle}{\sum_{j} \langle ij | v_{c} | ji \rangle}$$
$$SER_{i}^{\epsilon^{-1}} = \frac{\sum_{j} \langle ij | \epsilon^{-1} v_{c} | ji \rangle}{\sum_{j} \langle ij | v_{c} | ji \rangle}$$

 α^{SE-RSH} effectively approximates and accurately describes non-dynamical screening